The Computational Health Informatics Program (CHIP) at Boston Children’s Hospital hosts a training program for postdoctoral fellows to be trained in Informatics, Genomics, Machine Learning, Artificial Intelligence, and Biomedical Data Science. The program is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) at the National Institutes of Health (T32HD040128-16) and is open to US citizens and permanent residents.

CHIP, an affiliate of Harvard Medical School and a collaborating program of the Harvard Medical School Department of Biomedical Informatics, is recruiting postdoctoral fellows. Founded in 1994, CHIP is a multidisciplinary applied research and education program. Biomedical informatics has become a major theme and methodology for biomedical science, health care delivery, and population health, involving high-dimensional modeling and understanding of patients from the molecular to the population levels. We design information infrastructure for medical decision making, diagnosis, care redesign, public health management, and re-imagined clinical trials. The field is inherently interdisciplinary, drawing on traditional biomedical disciplines, the science and technology of computing, data science, biostatistics, epidemiology, decision theory, omics, implementation science, and health care policy and management. Our faculty are trained in medicine, data science, computer science, mathematics and epidemiology. Our faculty have been featured in The New York Times, Wall Street Journal, ABC News, CNBC, Bloomberg, CNN, Forbes, Financial Times, NBC News, GQ Magazine, U.S. News & World Report, Politico, and BBC News for their expertise on COVID-19.

We seek outstanding candidates passionate about advancing the ability to acquire and then reason over an entire spectrum of data types ranging from molecular and genomic all the way to clinical, epidemiological, environmental and social. Focus areas may include, but are not limited to research applications of machine learning/AI including COVID-19, medical applications of machine learning/AI including clinical decision support and predictive medicine, genomic and precision medicine, population health, health IT architectures and standards (e.g. SMART on FHIR apps and infrastructure), re-imagined clinical trials, real-world evidence, data visualization, and integrative omics. Candidates should have strong quantitative backgrounds.

Over the past two decades, the program has trained a mix of MDs and PhDs. More than 90 percent have gone on to receive independent funding in faculty positions in academic medicine.

Click here to learn more.


Applications are open, and admissions are available on a rolling basis.


Citizens or permanent residents of the United States enrolled in a research doctoral, research postdoctoral, clinical doctoral, or clinical postdoctoral are eligible to apply. Preference will be given to candidates who have, or are seeking, board certification in pediatric emergency medicine, or who have research interests that are aligned with CHIP’s core research areas.

The program has been committed to recruiting and retaining postdoctoral trainees who are URiM. We have maintained our commitment to diversity through prioritizing applications from diverse and disadvantaged backgrounds. Women and underrepresented minority groups are strongly encouraged to apply.

How to apply

Click here to ask questions.

To apply, send a CV, cover letter, personal statement, and three letters of reference to


Morales A, Ing A, Antolik C, Austin-Tse C, Baudhuin LM, Bronicki L, Cirino A, Hawley MH, Fietz M, Garcia J, Ho C, Ingles J, Jarinova O, Johnston T, Kelly MA, Kurtz CL, Lebo M, Macaya D, Mahanta L, Maleszewski J, Manrai AK, Murray M, Richard G, Semsarian C, Thomson KL, Winder T, Ware JS, Hershberger RE, Funke BH, Vatta M, . Harmonizing the Collection of Clinical Data on Genetic Testing Requisition Forms to Enhance Variant Interpretation in Hypertrophic Cardiomyopathy (HCM): A Study from the ClinGen Cardiomyopathy Variant Curation Expert Panel. The Journal of molecular diagnostics : JMD 2021.

Kohane IS, Aronow BJ, Avillach P, Beaulieu-Jones BK, Bellazzi R, Bradford RL, Brat GA, Cannataro M, Cimino JJ, García-Barrio N, Gehlenborg N, Ghassemi M, Gutiérrez-Sacristán A, Hanauer DA, Holmes JH, Hong C, Klann JG, Loh NHW, Luo Y, Mandl KD, Mohamad D, Moore JH, Murphy SN, Neuraz A, Ngiam KY, Omenn GS, Palmer N, Patel LP, Pedrera-Jiménez M, Sliz P, South AM, Tan ALM, Taylor DM, Taylor BW, Torti C, Vallejos AK, Wagholikar KB, Weber GM, Cai T. What Every Reader Should Know About Studies Using Electronic Health Record Data but May be Afraid to Ask. Journal of medical Internet research 2021.

Cutillo CM, Sharma KR, Foschini L, Kundu S, Mackintosh M, Mandl KD, . Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency. NPJ digital medicine 2020.

Brat GA, Weber GM, Gehlenborg N, Avillach P, Palmer NP, Chiovato L, Cimino J, Waitman LR, Omenn GS, Malovini A, Moore JH, Beaulieu-Jones BK, Tibollo V, Murphy SN, Yi SL, Keller MS, Bellazzi R, Hanauer DA, Serret-Larmande A, Gutierrez-Sacristan A, Holmes JJ, Bell DS, Mandl KD, Follett RW, Klann JG, Murad DA, Scudeller L, Bucalo M, Kirchoff K, Craig J, Obeid J, Jouhet V, Griffier R, Cossin S, Moal B, Patel LP, Bellasi A, Prokosch HU, Kraska D, Sliz P, Tan ALM, Ngiam KY, Zambelli A, Mowery DL, Schiver E, Devkota B, Bradford RL, Daniar M, Daniel C, Benoit V, Bey R, Paris N, Serre P, Orlova N, Dubiel J, Hilka M, Jannot AS, Breant S, Leblanc J, Griffon N, Burgun A, Bernaux M, Sandrin A, Salamanca E, Cormont S, Ganslandt T, Gradinger T, Champ J, Boeker M, Martel P, Esteve L, Gramfort A, Grisel O, Leprovost D, Moreau T, Varoquaux G, Vie JJ, Wassermann D, Mensch A, Caucheteux C, Haverkamp C, Lemaitre G, Bosari S, Krantz ID, South A, Cai T, Kohane IS. International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium. NPJ digital medicine 2020.